[1]朱强,张东生,范宇恒,等.基体碳种类对C/Cu复合材料界面浸润行为的影响[J].郑州大学学报(工学版),2021,42(05):100-105.[doi:10.13705/j.issn.1671-6833.2021.05.013]
 ZHU Qiang,ZHANG Dongsheng,FAN Yuheng,et al.Effect of Matrix Carbon Species on Interface Wetting Behavior of C/Cu Composites[J].Journal of Zhengzhou University (Engineering Science),2021,42(05):100-105.[doi:10.13705/j.issn.1671-6833.2021.05.013]
点击复制

基体碳种类对C/Cu复合材料界面浸润行为的影响()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
42卷
期数:
2021年05期
页码:
100-105
栏目:
出版日期:
2021-09-10

文章信息/Info

Title:
Effect of Matrix Carbon Species on Interface Wetting Behavior of C/Cu Composites
作者:
朱强张东生范宇恒张静赵红亮
郑州大学材料科学与工程学院;巩义市泛锐熠辉复合材料有限公司;
Author(s):
ZHU Qiang1 ZHANG Dongsheng2 FAN Yuheng1 ZHANG Jing1 ZHAO Hongliang1
1.School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; 2.Gongyi Van Yihui Composites Material Co., Ltd.
关键词:
Keywords:
matrix carbon reactive infiltration interface layer infiltration mechanism composites
DOI:
10.13705/j.issn.1671-6833.2021.05.013
文献标志码:
A
摘要:
采用真空反应浸渗法,分别以碳纤维/树脂碳(C/C)、碳纤维(Cf)、石墨(Graphite)、玻璃碳(GC)为基体碳制备了C/Cu复合材料。利用OM、XRD、SEM、EDX等检测分析方法研究了基体碳种类对C/Cu复合材料浸润行为以及界面层微观组织的影响。结果表明:Cf和C/C与Cu-Ti合金基体润湿性较好,接触角分别为56.26°和40.12°,而Graphite和GC与Cu-Ti合金基体不润湿,接触角均大于90°;Cu-Ti合金与Cf、C/C良好的润湿性源于熔渗过程中C原子在TixCuy相中反应扩散所生成的TiC界面层能够较好的与C相和Cu润湿,从而有效改善了C/Cu界面润湿性和界面结合状态;其中,基体碳为Cf时所生成的TiC界面层厚度最大,且致密均匀;综合考虑基体碳与Cu-Ti合金的润湿行为及界面层组织,四种碳基体的优劣顺序为:Cf > C/C > Graphite > GC。
Abstract:
The vacuum reaction infiltration method was used to prepare C / Cu composites with carbon fiber/resin carbon (C/C), carbon fiber (Cf), graphite (Graphite), and glassy carbon (GC) as matrix carbon. The OM, XRD, SEM, EDX and other detection and analysis methods were used to study the influence of different matrix carbon on the wetting behavior of C/Cu composites and the microstructure of the interface layer. The results showed that C/C and Cf had good wettability with Cu-Ti alloy, and the contact angles were 56.26° and 40.12°, respectively. However, Graphite and GC did not wet with Cu-Ti alloy, and the contact angles were both larger than 90°. The good wettability between Cu-Ti alloy and C/C、Cf is mainly because the TiC layer which is formed by reaction-diffusion during the vacuum reaction infiltration can be wetted well with C and Cu, improving the C/Cu interface wettability and interface bonding state. The TiC interface layer is dense and uniform, and had the largest thickness when the matrix carbon is Cf. Finally, by considering the wetting behavior and the interface layer microstructure, the order of precedence for different carbon matrix is as follows: Cf 、C/C、Graphite、GC.

参考文献/References:

[1] 王海涛, 文攀龙, 梁磊, 等. 润湿性对AgSnO2TiO2触头材料性能的影响[J]. 电子元件与材料, 2016,35(7):80-83.

[2] ZHANG H, LUO L, YANG K, et al. Improved multi-scale wavelet in pantograph slide edge detection[J]. Optik-international journal for light and electron optics, 2014, 125(19):5681-5683.
[3] ZHOU W Y, RAN L P, PENG K, et al. Effect of carbon/carbon preform density on the microstructure and properties of Mo2C interlayer-modified carbon/carbon-copper composites for sliding contact materials[J]. Advanced engineering materials, 2016, 18(2):277-283.
[4] LIU X R, LIU Y B, SUN Y, et al. Fabrication of C/Cu composites by mechanical activation and spark plasma sintering[J]. Advanced materials research, 2012, 499:223-226.
[5] RAN X, LIU R H, ZHANG D D. Research on carbon fiber reinforced C/Cu composites[J]. Advanced materials research, 2012,472-475:843-846.
[6] NOWELL M M. Ion beam preparation of passivated copper integrated circuit structures for electron backscatter diffraction/orientation imaging microscopy analysis[J]. Journal of electronic materials, 2002, 31(1):23-32.
[7] 代坤,孔威威,展鹏飞,等.石墨烯/TPU/PDMS导电复合材料的拉伸敏感性能研究[J].郑州大学学报(工学版),2019,40(2):75-79.
[8] LI H J, WANG Y, FU Q G. Ablation resistance of carbides-coated C/C composites[J]. Surface engineering, 2017, 33(11):1-7.
[9] SEVENO D, BLAKE T D, DE CONINCK J. Young′s equation at the nanoscale[J]. Physical review letters, 2013, 111(9):096101.
[10] OKAMOTO H. Cu-Ti (copper-titanium)[J]. Journal of phase equilibria, 2002, 23(6):549-550.
[11] LIANG Y H, HAN Z W, LI X J, et al. Study on the reaction mechanism of self-propagating high-temperature synthesis of TiC in the Cu-Ti-C system[J]. Materials chemistry and physics, 2012, 137(1):200-206.
[12] WU H,YI M Z,GE Y C, et al. Microstructural development of a C/C-ZrC-Cu composite prepared by reactive melt infiltration with Zr/Cu powder mixture[J]. Materials characterization, 2018, 138:238-244.
[13] RAMBO C R, TRAVITZKY N, GREIL P. Conductive TiC/Ti-Cu/C composites fabricated by Ti-Cu alloy reactive infiltration into 3D-printed carbon performs[J]. Journal of composite materials, 2015, 49(16):1971-1976.
[14] EDIE D D, STONER E G. Effect of microstructure and shape on carbon fiber properties [M]//BUCKLEY J D, EDIE D D. Carbon-carbon materials and composites. Oxford: William andrew publishing, 1993: 41-69.
[15] SHARMA S, KUMAR C N S, KORVINK J G, et al. Evolution of glassy carbon microstructure: in situ transmission electron microscopy of the pyrolysis process[J]. Scientific reports, 2018, 8(1):1-12.
[16] TZENG S S, CHR Y G. Evolution of microstructure and properties of phenolic resin-based carbon/carbon composites during pyrolysis[J]. Materials chemistry and physics, 2002, 73(2/3):162-169.

更新日期/Last Update: 2021-10-11