[1]张银霞,杨鑫,原少帅,等.喷丸工艺对DC53钢表面完整性的影响试验研究[J].郑州大学学报(工学版),2021,42(03):76.[doi:10.13705/j.issn.1671-6833.2021.03.013]
 Zhang Yinxia,Yang Xin,Yuan young handsome,et al.Study on the Effect of Shot Peening Process on the Surface Integrity of DC53 Steel[J].Journal of Zhengzhou University (Engineering Science),2021,42(03):76.[doi:10.13705/j.issn.1671-6833.2021.03.013]
点击复制

喷丸工艺对DC53钢表面完整性的影响试验研究()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
42
期数:
2021年03期
页码:
76
栏目:
出版日期:
2021-05-10

文章信息/Info

Title:
Study on the Effect of Shot Peening Process on the Surface Integrity of DC53 Steel
作者:
张银霞 杨鑫 原少帅 于鑫 刘治华
郑州大学抗疲劳制造技术河南省工程实验室;
Author(s):
Zhang Yinxia; Yang Xin; Yuan young handsome; Yu Xin; Liu Zhihua;
Zhengzhou University Anti -fatigue Manufacturing Technology Henan Provincial Engineering Laboratory;
关键词:
Keywords:
shot peening pressure shot peening angle residual stress hardness roughness
DOI:
10.13705/j.issn.1671-6833.2021.03.013
文献标志码:
A
摘要:
为了探究喷丸角度¸喷丸压力等喷丸工艺参数对DC53钢表面完整性的影响,通过试验研究了不同喷丸角度¸喷丸压力对DC53钢表层残余应力场分布及硬度场分布的影响规律,同时分析了喷丸后的表面形貌及喷丸工艺参数对表面粗糙度的影响结果表明:喷丸后DC53钢引入了一定深度的残余压应力层,残余压应力随深度的增加呈现“U”型分布,当喷丸压力为0.5MPa,喷丸角度为90º时,最大残余压应力趋于稳定在约1075MPa,残余压应力层深度大约为410µm喷丸后DC53钢的表层硬度值及硬化层深度均有明显增大,当喷丸角度为90º,喷丸压力为0.55MPa时,表面硬度可由58.3HRC提高至62.4HRC,并形成了约330µm厚的硬化层喷丸后表面形貌发生明显变化,相较于原始试样,随着喷丸角度与喷丸压力的增大,表面粗糙度值先减小再增大研究结果可为DC53钢喷丸工艺参数的合理选择提供参考依据 。
Abstract:
In order to explore the influence of shot peening angle and shot peening pressure on the surface integrity of DC53 steel, the effects of different shot peening angles and shot pressures on the residual stress distribution and hardness distribution on the surface of DC53 steel are studied by experiment, and the morphology after shot peening and the effect of shot peening on roughness are analyzed. The results show that after shot peening, DC53 steel introduces a residual compressive stress layer with a certain depth. The stress shows a “U”-shaped distribution with depth increasing. When the shot peening pressure is 0.5 MPa, and the shot peening angle is 90°, the maximum stress tends to stabilize about 1 075 MPa, and the stress layer depth is about 410 μm. The surface hardness value and hardened layer depth of DC53 steel after shot peening are obviously increased. When the shot peening angle is 90° and the shot peening pressure is 0.55 MPa, the surface hardness increases from 58.3 HRC to 62.4 HRC,and a hardened layer of about 330 μm is formed. The surface morphology changes significantly after shot peening, compared with the original specimens, the surface roughness value decreases first and then increases with the increasing of the shot peening angle and shot peening pressure. The research results can provide a reference for the reasonable selection of shot peening parameters of DC53 steel.

参考文献/References:

[1] 白云,丁志诚.隧道掘进机施工技术[M].北京:中国建筑工业出版社,2008.

[2] 张银霞,江志强,段留洋,等.TBM盘形滚刀破岩过程的数值研究[J].郑州大学学报(工学版),2016,37(1):75-78.
[3] 王天祥.TBM滚刀刀圈材料喷丸强化的试验研究与数值模拟[D].郑州:郑州大学,2018.
[4] 李诚,揭晓华,张艳梅,等.DC53冷作模具钢基于短时渗硼的强韧化[J]. 材料热处理学报,2014,35(9): 188-194.
[5] 张俊喜,郭小汝.DC53模具钢耐磨性能研究[J].兰州工业学院学报, 2016,23(2): 80-83.
[6] 朱大虎.难加工材料高速外圆磨削机理及其表面完整性研究[D].上海:东华大学,2011.
[7] 何少杰,杨文玉,郭步鹏,等. 机加工表面残余应力及其疲劳寿命评价的研究进展[J]. 表面技术, 2015,44(6): 120-126,132.
[8] 龚军振,马泳涛,吴政协,等.Al6061铣削精加工表层残余应力分布试验研究[J].表面技术,2018,47(4):281-285.
[9] HASHIMOTO F, GUO Y B, WARREN A W.Surface integrity difference between hard turned and ground surfaces and its impact on fatigue life[J].CIRP annals-manufacturing technology,2006,55(1):81-84.
[10] AROLA D, ALADE A E, WEBER W. Improving fatigue strength of metals using abrasive waterjet peening[J]. Machining science and technology,2006,10(2):197-218.
[11] 周松,谢里阳,回丽,等. 喷丸强化对2XXX铝合金疲劳寿命的影响[J]. 材料工程, 2014(12): 86-91.
[12] 薛雯娟,刘林森,王开阳,等. 喷丸处理技术的应用及其发展[J]. 材料保护, 2014,47(5):46-49,8.
[13] 何声馨,刘坤坤,王锐,等. 喷丸表面的最佳粗糙度参数与材料硬度的关系[J]. 郑州大学学报(工学版), 2019,40(1): 83-86.
[14] 陈欢,张银霞,郜伟,等.TBM滚刀刀圈用DC53钢淬火工艺的研究[J].热加工工艺,2017,46(20):208-210,213.
[15] YAO C F,WU D X,MA L F, et al. Surface integrity evolution and fatigue evaluation after milling mode,shot-peening and polishing mode for TB6 titanium alloy[J].Applied surface science,2016,387:1257-1264.

更新日期/Last Update: 2021-06-24