[1]刘可,巩敦卫.用于指尖定位的多目标分布估计算法[J].郑州大学学报(工学版),2019,40(04):12.[doi:10.13705/j.issn.1671-6833.2019.04.011]
 Liu Ke,Gong Dunwei.A Multi-objective Estimation of Distribution Algorithm for the Fingertip Localization[J].Journal of Zhengzhou University (Engineering Science),2019,40(04):12.[doi:10.13705/j.issn.1671-6833.2019.04.011]
点击复制

用于指尖定位的多目标分布估计算法()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
40
期数:
2019年04期
页码:
12
栏目:
出版日期:
2019-07-10

文章信息/Info

Title:
A Multi-objective Estimation of Distribution Algorithm for the Fingertip Localization
作者:
刘可巩敦卫
1. 商丘师范学院电子电气工程学院;2. 中国矿业大学信息与控制工程学院
Author(s):
Liu Ke 1;Gong Dunwei 2
1. School of Electrical and Electronic Engineering, Shangqiu Normal University; 2. School of Information and Control Engineering, China University of Mining and Technology
关键词:
指尖定位多目标优化分布估计算法采样方差
Keywords:
fingertip positioningMulti-objective optimizationdistribution estimation algorithmsampling variance
DOI:
10.13705/j.issn.1671-6833.2019.04.011
文献标志码:
A
摘要:
在基于指尖的人机交互系统中,指尖中心的位置是非常重要的.通过求解指尖定位的多目标优化模型,能够得到多个指尖中心的位置.由于指尖像素点分布在指尖中心的附近,指尖定位优化模型的最优解分量也符合这一分布规律.求解指尖定位优化模型时,采用符合这一分布规律的分布估计算法,能够得到比较准确的结果.本文对指尖定位的分布估计算法进行研究,提出决策变量的维数、种群规模、最大采样方差、最小采样方差,是这一分布估计算法的主要参数. 实验结果表明:上述主要参数的取值存在最佳值;它们均取最佳值时,得到的指尖中心位置,优于已有方法的计算结果.
Abstract:
In the human-computer interaction system based on fingertip, the position of fingertip center is very important. By solving the multi-objective optimization model for the fingertip localization, several fingertip center positions can be obtained. The fingertip pixels distribute around the fingertip centers, so the optimal solution components of this optimization model have the above distribution law. Using the estimation of distribution algorithm with the distribution law to solve this optimization model, can obtain accurate results. This paper discusses the estimation of distribution algorithm for the fingertip localization. It proposes that the decision variable dimension, population size, maximum sampling variance, and minimum sampling variance are the main parameters of this estimation of distribution algorithm. The experimental results show that each main parameter has its best value; when their values are their best values, the fingertip center positions obtained by the proposed method excel the results of the existing methods.

相似文献/References:

[1]肖俊明.周谦,瞿博阳,韦学辉.多目标进化算法及其在电力环境经济调度中的应用综述[J].郑州大学学报(工学版),2016,37(02):1.[doi:Multi-objective Evolutionary Algorithm and Its Ap]
 Xiao Junming,Zhou Qian,Qu Boyang,et al.Multi-objective Evolutionary Algorithm and Its Application in Electric Power Environment Economic Dispatch[J].Journal of Zhengzhou University (Engineering Science),2016,37(04):1.[doi:Multi-objective Evolutionary Algorithm and Its Ap]
[2]王志,王朝雅,杨飞.弹性底板上的液压支架整体尺寸参数优化[J].郑州大学学报(工学版),2017,38(03):73.[doi:10.13705/j.issn.1671-6833.2016.06.002]
 Wang Zhichao,Ya Yangfei.Overall Parameter Optimizes of the Hydraulic Support on the Elastic Foundation[J].Journal of Zhengzhou University (Engineering Science),2017,38(04):73.[doi:10.13705/j.issn.1671-6833.2016.06.002]
[3]李佳华,马连博,王兴伟,等.基于多目标蜂群进化优化的微电网能量调度方法[J].郑州大学学报(工学版),2018,39(06):50.[doi:10.13705/j.issn.1671-6833.2018.06.020]
 Li Jiahua,Malembo,Wang Xingwei,et al.A Novel Multi-objective Artificial Bee Colony Algorithm for Microgrid Energy Dispatching Model[J].Journal of Zhengzhou University (Engineering Science),2018,39(04):50.[doi:10.13705/j.issn.1671-6833.2018.06.020]
[4]章健,熊壮壮,王明东,等.基于二阶锥规划的主动配电网动态无功优化[J].郑州大学学报(工学版),2019,40(01):32.[doi:10.13705/j.issn.1671-6833.2019.01.003]
 Zhang Jian,Bear strong,Wang Mingdong,et al.Dynamic Reactive Power Optimization in Active Distribution Network Based on Second-Order Cone Programming[J].Journal of Zhengzhou University (Engineering Science),2019,40(04):32.[doi:10.13705/j.issn.1671-6833.2019.01.003]
[5]闫李,李超,柴旭朝,等.基于多学习多目标鸽群优化的动态环境经济调度[J].郑州大学学报(工学版),2019,40(04):2.[doi:10.13705/j.issn.1671-6833.2019.04.023]
 Yan Li,Li Chao,Chai Xuchao,et al.Dynamic Economic Emission Dispatch Based On Multiple Learning Multi-objective Pigeon-inspired Optimization[J].Journal of Zhengzhou University (Engineering Science),2019,40(04):2.[doi:10.13705/j.issn.1671-6833.2019.04.023]
[6]朱晓东,王颖,杨之乐,等.启发式多目标优化算法在能源和电力系统中的典型应用综述[J].郑州大学学报(工学版),2019,40(05):1.[doi:10.13705/j.issn.1671-6833.2019.05.010]
 Zhu Xiaodong,Wang Ying Young Joy Guo Yuanjun.A review of typical applications of heuristic multi-objective optimization algorithms in energy and power systems[J].Journal of Zhengzhou University (Engineering Science),2019,40(04):1.[doi:10.13705/j.issn.1671-6833.2019.05.010]
[7]张茂清,汪镭,崔志华,等.基于混合策略的快速非支配排序算法II[J].郑州大学学报(工学版),2020,41(04):23.[doi:10.13705/j.issn.1671-6833.2020.04.007]
 ZHANG Maoqing,WANG Lei,CUI Zhihua,et al.Fast Non-dominated Sorting Genetic Algorithm II Based on Hybrid Strategies[J].Journal of Zhengzhou University (Engineering Science),2020,41(04):23.[doi:10.13705/j.issn.1671-6833.2020.04.007]
[8]华一村,刘奇奇,郝矿荣,等.非规则Pareto前沿面多目标进化优化算法研究综述[J].郑州大学学报(工学版),2021,42(01):1.[doi:10.13705/j.issn.1671-6833.2021.01.001]
 HUA Yicun,LIU Qiqi,HAO Kuangrong,et al.A Survey of Evolutionary Algorithms for Multi-objective Optimization Problems with Irregular Pareto Fronts[J].Journal of Zhengzhou University (Engineering Science),2021,42(04):1.[doi:10.13705/j.issn.1671-6833.2021.01.001]
[9]刘家学,李文华,朱铁稳.飞机元器件可靠性的优化模型[J].郑州大学学报(工学版),1998,19(02):115.
 [J].Journal of Zhengzhou University (Engineering Science),1998,19(04):115.

更新日期/Last Update: 2019-07-29