[1]陈泽钦,刘国明.基于Gudehus-Bauer亚塑性模型的面板堆石坝应力变形研究[J].郑州大学学报(工学版),2020,41(06):53-59.[doi:10.13705/j.issn.1671-6833.2020.06.013]
 CHEN Zeqin,LIU Guoming.Stress and Deformation of CFRD Based on Gudehus-Bauer Subplastic Constitutive Model[J].Journal of Zhengzhou University (Engineering Science),2020,41(06):53-59.[doi:10.13705/j.issn.1671-6833.2020.06.013]
点击复制

基于Gudehus-Bauer亚塑性模型的面板堆石坝应力变形研究()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
41
期数:
2020年06期
页码:
53-59
栏目:
出版日期:
2020-12-31

文章信息/Info

Title:
Stress and Deformation of CFRD Based on Gudehus-Bauer Subplastic Constitutive Model
作者:
陈泽钦刘国明
国网福建省电力有限公司电力科学研究院,福建福州350007, 福州大学土木工程学院,福建福州350108

Author(s):
CHEN Zeqin1 LIU Guoming2
1.State Grid FuJian Electric Power Research Institute, Fuzhou 350007,China; 2.College of Civil Engineering,Fuzhou University,Fuzhou 350108,China
关键词:
Keywords:
concrete-faced rockfill dam rockfill modified Gudehus-Bauer hypoplastic model finite element method
DOI:
10.13705/j.issn.1671-6833.2020.06.013
文献标志码:
A
摘要:
介绍了Gudehus-Bauer亚塑性本构模型及其参数求取方法,针对堆石料在模型线性项中增加了体积应变控制项 ,并建立了拟合指数α和β与围压之间的关系,提出了新的模型拟合参数。利用改进的Gudehus-Bauer亚塑性本构模型对面板堆石坝进行了非线性有限元应力变形分析,将获取的数值结果与双屈服面模型和E-B模型对比分析。计算结果表明,改进的Gudehus-Bauer亚塑性模型计算的堆石体沉降量、水平位移分布、主应力分布与沈珠江双屈服面模型较为接近,同时克服了蓄水期邓肯E-B模型面板底部顺坡向拉应力偏大的缺点。因此,改进的Gudehus-Bauer亚塑性模型可应用于面板堆石坝的应力变形分析。
Abstract:
The Gudehus-Bauer hypoplastic constitutive model and its parameters were introduced briefly. Based on the Gudehus-Bauer hypoplastic constitutive model, the relationships between the parameters α, β and the confining pressure were established. The triaxial compression test curves of rockfill materials were simulated with the Gudehus-Bauer hypoplastic constitutive model and compared with the test values. According to the simulation results, a volumetric strain control term was added to the model, which improved the triaxial compression test volumetric strain curve of rockfill material simulated by he Gudehus-Bauer hypoplastic constitutive model. The stress-deformation analysis of CFRD was performed by the modified Gudehus-Bauer hypoplastic constitutive model with 3D Nonlinear finite element, and the results were compared with the double-yield surface model and Duncan E-B model. The numerical results indicated that the settlement, the horizontal displacement distribution and the principal stress distribution calculated by the modified Gudehus-Bauer hypoplastic constitutive model were close to the Shen Zhujiang’s double-yield surface model. Meanwhile, it could overcome the problem of higher tensile stresses at the bottom of face slabs calculated by the Duncan E-B mode in storage period.

参考文献/References:

[1] KOLYMBAS D. A rate-dependent constitutive equation for soils[J]. Mechanics research communications, 1977, 4(6):367-372.

[2] GUDEHUS G.A comprehensive constitutive equation for granular materials[J].Soils and foundations,1996,36(1):1-12.
[3] BAUER E.Calibration of a comprehensive hypoplastic model for granular materials[J].Soils and foundations,1996,36(1):13-26.
[4] HERLE I,GUDEHUS G.Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies[J].Mechanics of cohesive-frictional materials,1999,4(5):461-486.
[5] FUENTES W, TRIANTAFYLLIDIS T. ISA model:a constitutive model for soils with yield surface in the intergranular strain space[J]. International journal for numerical and analytical methods in geomechanics, 2015, 39(11):1235-1254.
[6] WANG G, XIE Y. Modified bounding surface hypoplasticity model for sands under cyclic loading[J]. Journal of engineering mechanics, 2014, 140(1):91-101.
[7] LIN J, WU W. A comparative study between DEM and micropolar hypoplasticity[J]. Powder technology, 2016, 293:121-129.
[8] 岑威钧, 王修信. 堆石料本构建模新途径[J]. 河海大学学报(自然科学版), 2008, 36(1):102-105.
[9] 岑威钧, 王修信, BAUER E,等. 堆石料的亚塑性本构建模及其应用研究[J]. 岩石力学与工程学报, 2007, 26(2):312-322.
[10] 吴长彬, 张岩, 许小东. 应用于堆石坝的弹塑性模型与亚塑性模型的理论对比分析[J]. 灾害与防治工程, 2009(2):8-14.
[11] 岑威钧. 堆石料亚塑性本构模型及面板堆石坝数值分析[D]. 南京:河海大学, 2005.
[12] XIANG B, ZHANG Z L, CHI S C. An improved hypoplastic constitutive model of rockfill considering effect of stress path[J]. Journal of central south university of technology, 2009, 16(6):1006-1013.
[13] 明华军, 孙开畅, 徐小峰,等. 考虑颗粒破碎对特征孔隙比影响的堆石体亚塑性本构模型[J]. 岩土力学, 2016, 37(1):33-40.
[14] 陈泽钦, 刘国明, 林伯江. 堆石料Wang-Wu亚塑性本构模型参数求取的改进[J]. 福州大学学报(自然科学版), 2017, 45(2):199-205.
[15] 王仁超, 曹婷婷, 刘严如. 亚塑性模型不同积分算法的数值实现[J]. 岩土力学, 2017, 38(5):1510-1516.
[16] 唐扬. 亚塑性本构模型及三峡库区塘角滑坡稳定性判据研究[D]. 北京:中国地质大学, 2019.
[17] OSINOV V A, CHRISOPOULOS S, TRIANTAFYLLIDIS T. Numerical analysis of the tunnel-soil interaction caused by an explosion in the tunnel[J]. Soil dynamics and earthquake engineering, 2019,122:318-326.
[18] HLEIBIEH J,HERLE I.The performance of a hypoplastic constitutive model in predictions of centrifuge experiments under earthquake conditions[J].Soil dynamics and earthquake engineering,2019,122:310-317.
[19] Von WOLFFERSDORFF A. A hypoplastic relation for granular materials with a predefined limit state surface[J]. Mechanics of cohesive-frictional materials, 1996, 1(3):251-271.
[20] 傅华, 米占宽,朱秩,等. 福建仙游抽水蓄能电站面板堆石坝坝体填筑料静力特性试验研究[R]. 南京:南京水利科学院, 2004.[21] 顾淦臣, 沈长松,岑威钧. 土石坝地震工程[M]. 北京: 中国水利水电出版社, 2009.

更新日期/Last Update: 2021-02-10