[1]苏士美,吕雪扬.骨髓细胞图像的小波变换与K-means聚类分割算法[J].郑州大学学报(工学版),2015,36(04):15-18.[doi:10.3969/ j.issn.1671 -6833.2015.04.004]
SU Shi mei,LV Xue yang.Segmentation Algorithm for Bone Marrow Cell Image Based on TheWavelet Transform and K-means Clustering[J].Journal of Zhengzhou University (Engineering Science),2015,36(04):15-18.[doi:10.3969/ j.issn.1671 -6833.2015.04.004]
点击复制
骨髓细胞图像的小波变换与K-means聚类分割算法()
《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]
- 卷:
-
36
- 期数:
-
2015年04期
- 页码:
-
15-18
- 栏目:
-
- 出版日期:
-
2015-08-31
文章信息/Info
- Title:
-
Segmentation Algorithm for Bone Marrow Cell Image Based on TheWavelet Transform and K-means Clustering
- 作者:
-
苏士美; 吕雪扬
-
郑州大学电气工程学院,河南郑州450001
- Author(s):
-
SU Shi mei1; LV Xue yang2
-
School of Electrical Engineering ,Zhengzhou University ,Zhengzhou 450001,China
-
- 关键词:
-
细胞分割:小波变换:K-means聚类:颜色特征
- Keywords:
-
cell segmentation; wavelet transform; K-means clustering; color feature
- 分类号:
-
TP317.4
- DOI:
-
10.3969/ j.issn.1671 -6833.2015.04.004
- 文献标志码:
-
A
- 摘要:
-
为了能准确地分割出骨髓细胞涂片中的各类细胞,提出一种基于小波分析的聚类分割方法.首先采用小波变换消除散焦噪声,然后通过对彩色图像G分量进行小波系数多尺度分解,提取特征参数信息,根据图像G分量与S分量的差异性并结合得到变换图像STG,二值化处理提取白细胞胞核,最后为K-means聚类方法提供优化的初始聚类中心,从而对各类红细胞、白细胞进行分割和分离.通过对比分析和实验测试,该算法有效克服了骨髓细胞显微图像的复杂散焦、细胞种类繁多以及目标区分度低而导致图像分割的困难,准确率达94.15% .
- Abstract:
-
A segmentation method based on the wavelet analysis is proposed in this paper for segmenting visi-ble components from the bone marrow cell. Firstly,the wavelet transform is used to erase the effect of defocus-ing.Secondly,G component is chosen as clustering the information of characteristic parameters by using thethreshold multi-scale wavelet analysis,which is combined with saturation component according to different dis-tribution characteristic of leukocyte nucleus to construct a transpositional image named STG. The nucleus areextract by thresholding the image.Ultimately,it can provide an optimal initial clustering centers for K-meansclustering method to segment the red blood cells and the white blood cells from the background as well as sepa-rate them from each other. Through comparative analysis and algorithm testing,this method can effectively o-vercome the difficulties of complex components,poor discrimination and complicated defocusing during thecells segmentation ,the accuracy rate reaches 94.15 % .
更新日期/Last Update: