[1]苏士美,吕雪扬.骨髓细胞图像的小波变换与K-means聚类分割算法[J].郑州大学学报(工学版),2015,36(04):15-18.[doi:10.3969/ j.issn.1671 -6833.2015.04.004]
 SU Shi mei,LV Xue yang.Segmentation Algorithm for Bone Marrow Cell Image Based on TheWavelet Transform and K-means Clustering[J].Journal of Zhengzhou University (Engineering Science),2015,36(04):15-18.[doi:10.3969/ j.issn.1671 -6833.2015.04.004]
点击复制

骨髓细胞图像的小波变换与K-means聚类分割算法()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
36
期数:
2015年04期
页码:
15-18
栏目:
出版日期:
2015-08-31

文章信息/Info

Title:
Segmentation Algorithm for Bone Marrow Cell Image Based on TheWavelet Transform and K-means Clustering
作者:
苏士美吕雪扬
郑州大学电气工程学院,河南郑州450001
Author(s):
SU Shi mei1LV Xue yang2
School of Electrical Engineering ,Zhengzhou University ,Zhengzhou 450001,China
关键词:
细胞分割:小波变换:K-means聚类:颜色特征
Keywords:
cell segmentation wavelet transform K-means clusteringcolor feature
分类号:
TP317.4
DOI:
10.3969/ j.issn.1671 -6833.2015.04.004
文献标志码:
A
摘要:
为了能准确地分割出骨髓细胞涂片中的各类细胞,提出一种基于小波分析的聚类分割方法.首先采用小波变换消除散焦噪声,然后通过对彩色图像G分量进行小波系数多尺度分解,提取特征参数信息,根据图像G分量与S分量的差异性并结合得到变换图像STG,二值化处理提取白细胞胞核,最后为K-means聚类方法提供优化的初始聚类中心,从而对各类红细胞、白细胞进行分割和分离.通过对比分析和实验测试,该算法有效克服了骨髓细胞显微图像的复杂散焦、细胞种类繁多以及目标区分度低而导致图像分割的困难,准确率达94.15% .
Abstract:
A segmentation method based on the wavelet analysis is proposed in this paper for segmenting visi-ble components from the bone marrow cell. Firstly,the wavelet transform is used to erase the effect of defocus-ing.Secondly,G component is chosen as clustering the information of characteristic parameters by using thethreshold multi-scale wavelet analysis,which is combined with saturation component according to different dis-tribution characteristic of leukocyte nucleus to construct a transpositional image named STG. The nucleus areextract by thresholding the image.Ultimately,it can provide an optimal initial clustering centers for K-meansclustering method to segment the red blood cells and the white blood cells from the background as well as sepa-rate them from each other. Through comparative analysis and algorithm testing,this method can effectively o-vercome the difficulties of complex components,poor discrimination and complicated defocusing during thecells segmentation ,the accuracy rate reaches 94.15 % .
更新日期/Last Update: