[1]邹柏贤,苗军..自然图像稀疏编码模型研究综述[J].郑州大学学报(工学版),2013,34(03):106-111.[doi:10.3969/j.issn.1671-6833.2013.03.026]
 ZOU Bai-xian,MIAO Jun.Review on Sparse Coding Research of Natural Image[J].Journal of Zhengzhou University (Engineering Science),2013,34(03):106-111.[doi:10.3969/j.issn.1671-6833.2013.03.026]
点击复制

自然图像稀疏编码模型研究综述()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
34
期数:
2013年03期
页码:
106-111
栏目:
出版日期:
2013-05-31

文章信息/Info

Title:
Review on Sparse Coding Research of Natural Image
作者:
邹柏贤苗军.
北京联合大学应用文理学院,北京,100083, 中国科学院计算技术研究所智能信息处理重点实验室,北京,100190
Author(s):
ZOU Bai-xian1MIAO Jun2
1.College of Arts & Science,Beijing Union University,Beijing 10083,China; 2.Key Laboratory of Intelligent InformationProcessing,Institute of Computing ’Technology ,Chinese Academy of Seiences ,Beijing 100190,China
关键词:
稀疏编码模型 模拟视觉模型 统计分析模型
Keywords:
sparse coding modelvision modelstatistical analysis model
分类号:
TP391.4
DOI:
10.3969/j.issn.1671-6833.2013.03.026
摘要:
根据建模出发点的不同,把各种建模方法分为模拟视觉系统模型、统计分析模型两大类方法,根据不同的目标、不同的模型特征和结构,把模拟视觉系统的稀疏编码模型分又为最大似然概率、目标函数优化、Gabor小波基函数、超完备基、神经网络、分层稀疏编码六类模型.根据模型学习方法的不同,统计分析模型又分为独立分析、非负矩阵分解以及特定特征的稀疏编码3种模型.针对上述各种模型进行了介绍、分析和研究,并归纳总结不同方法的主要特点,最后进行了展望.
Abstract:
Tdifferent modeling objectives,characteristics,the sparse coding models for simulation of the visual system are classified into the following sixcategories ,those are maximum likelihood models,the optimization models of the objective functions,the func-tion model of Gabor wavelet basis,super-complete basis models,the models of neural networks,and the levelsparse coding model. In accordance with learning methods for models, the statistical analysis models are divid-ed into independent analysis models,non-negative matrix factorization models,as well as specific characteris-tics of sparse coding models. All the various models are introduced,analyzed and studied,the main featuresof different models are Summarized and compared,and their future prospects are proposed.
更新日期/Last Update: 1900-01-01