[1]贾程,陈卉卉..一种单位分解三角形单元及其在动力响应分析中的应用[J].郑州大学学报(工学版),2012,33(06):125-128.[doi:10.3969/j.issn.1671-6833.2012.06.030]
JIA Cheng,CHEN Huihui.A Partition of Unity Triangle Finite Element and Its Application to Vibration Analysis[J].Journal of Zhengzhou University (Engineering Science),2012,33(06):125-128.[doi:10.3969/j.issn.1671-6833.2012.06.030]
点击复制
一种单位分解三角形单元及其在动力响应分析中的应用()
《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]
- 卷:
-
33
- 期数:
-
2012年06期
- 页码:
-
125-128
- 栏目:
-
- 出版日期:
-
2012-11-10
文章信息/Info
- Title:
-
A Partition of Unity Triangle Finite Element and Its Application to Vibration Analysis
- 作者:
-
贾程; 陈卉卉.
-
盐城工学院土木工程学院,江苏盐城,224051, 盐城工学院土木工程学院,江苏盐城,224051
- Author(s):
-
JIA Cheng; CHEN Huihui
-
School of Civil Engineering, Yancheng Institute of Technology, Yancheng 224051, China
-
- 关键词:
-
单位分解; 局部近似; 自由振动; 强迫振动
- Keywords:
-
partition of unity ; local approximation ; free vibration ; forced vibration
- 分类号:
-
0343.1
- DOI:
-
10.3969/j.issn.1671-6833.2012.06.030
- 摘要:
-
基于单位分解方法,使用通常的三角形“单元”形函数作单位分解函数,多项式基函数用来作局部近似函数,提出有限元无网格耦合三角形单元.该三角形单元综合了有限元和无网格点插值法的优点,其形函数可看成是两种方法的复合函数,具有Kronecker delta性质,能够像有限元一样直接施加位移边界条件,采用该单元分析了二维固体的自由振动和强迫振动响应.计算结果表明:该单元没有虚假的零能模式,计算结果的精度优于线性三角形单元和线性四边形等参元.
- Abstract:
-
A new triangle element, combining meshfree and finite element methods, is developed based on par.tition of unity , using the polynomial basis functions for the local approximation and the shape functions of classi.cal linear triangle element for partition of unity funetions, This triangle element synthesizes the strengths of themeshfree and finite element methods, whose shape function can be understood as composite function of the twomethods and has Kronecker delta property so as to implement displacement conditions directly like finite elementmethods. The element is applied to free vibration and forced vibration analysis of two-dimensional solids. Nu.merical results show that the present triangle element does not have spurious zero-energy modes and its resultsare more accurate than that of classical linear triangle element and classical isoparametric quadrilateral element.
更新日期/Last Update:
1900-01-01