[1]张忠林,曹志宇,李元韬.基于加权欧式距离的k-means算法研究[J].郑州大学学报(工学版),2010,31(01):89-92.
 ZHANG Zhonglin,CAO Zhiyu,LI Yuantao.Research Based on Euclid Distance with Weights of K——means Algorithm[J].Journal of Zhengzhou University (Engineering Science),2010,31(01):89-92.
点击复制

基于加权欧式距离的k-means算法研究(/HTML)
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
31
期数:
2010年01期
页码:
89-92
栏目:
出版日期:
2010-01-30

文章信息/Info

Title:
Research Based on Euclid Distance with Weights of K——means Algorithm
作者:
张忠林曹志宇李元韬
兰州交通大学,电子与信息工程学院
Author(s):
ZHANG ZhonglinCAO ZhiyuLI Yuantao
School of Electronics and Information Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China
关键词:
k-means算法聚类加权变异系数
Keywords:
k_means algorithmclusteringweightcoefficient of variation
分类号:
TP391
文献标志码:
A
摘要:
统的k—means算法将欧式距离作为最常用的距离度量方法.针对基于欧式距离计算样本点与类间相似度的不足,用“相对距离”代替“绝对距离”可以更好地反映样本的实际分布,提出一种在领域知识未知的情况下基于加权欧式距离的k_means算法.针对公共数据库UCI里的数据实验表明改进后的算法能产生质量较高的聚类结果.
Abstract:
Euclid distance is commonly used to measure distance in the traditional k_means algorithm.The k—means algorithm based on weighted Euclid distance is researched and presented to overcome the existing problems of similarity calculation in clustering analysis based on traditional Euclid distance when we have no anydomain knowledge about the data objects,the relative distance but not absolute distance is more accurately re—sponse to data distribution.Experiments on the standard database UCI show that the proposed method can produce ahigh accuracy clustering result.

参考文献/References:

【1]PANG N T,MICHAEL S,VIP]N K.数据挖掘导论(英文版)[M].北京:人民邮电出版社,2006.
[2]HANJ W,MICHELINE K.数据挖掘概念与技术[M].北京:机械工业出版社,2005.
[3] 沈洁,赵雷。杨季文,等.一种基于划分的层次的聚类算法[J】.计算机工程与应用,2007,43(3I):175一177.
[4]孙吉贵,刘杰,赵连字.聚类算法研究[J】.软件学万方数据92郑州大学学报(工学版)2010在报,2008.19(01):48—61.
[5] 马卫武,李念平,杨志昂.室内空气品质综合评价权重系数的确定与分析[J].通风除尘。2004。(1 1):9—1I.

相似文献/References:

[1]尹宏伟,杭雨晴,胡文军.融合异常检测与区域分割的高效K-means 聚类算法[J].郑州大学学报(工学版),2024,45(03):80.[doi:10. 13705/ j. issn. 1671-6833. 2024. 03. 010]
 YIN Hongwei,HANG Yuqing,HU Wenjun.Efficient K-means with Region Segment and Outlier Detection[J].Journal of Zhengzhou University (Engineering Science),2024,45(01):80.[doi:10. 13705/ j. issn. 1671-6833. 2024. 03. 010]
[2]胡燕,朱晓瑛,马刚.基于K-Means和时间匹配的位置预测模型[J].郑州大学学报(工学版),2017,38(02):17.[doi:10.13705/j.issn.1671-6833.2017.02.005]
 Hu Yan,Zhu Xiaoying,Ma Gang.Location Prediction Model Based on K-Means Algorithm and Time Matching[J].Journal of Zhengzhou University (Engineering Science),2017,38(01):17.[doi:10.13705/j.issn.1671-6833.2017.02.005]

更新日期/Last Update: 2023-03-06