[1]马细霞,陈鑫,胡铁成..基于ANFIS模型的年径流预报方法[J].郑州大学学报(工学版),2007,28(03):121-124.[doi:10.3969/j.issn.1671-6833.2007.03.032]
Ma Xiaoxia,CHEN Xin,Hu Tiecheng.Annual runoff forecasting method based on ANFIS model[J].Journal of Zhengzhou University (Engineering Science),2007,28(03):121-124.[doi:10.3969/j.issn.1671-6833.2007.03.032]
点击复制
基于ANFIS模型的年径流预报方法()
《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]
- 卷:
-
28
- 期数:
-
2007年03期
- 页码:
-
121-124
- 栏目:
-
- 出版日期:
-
1900-01-01
文章信息/Info
- Title:
-
Annual runoff forecasting method based on ANFIS model
- 作者:
-
马细霞; 陈鑫; 胡铁成.
-
郑州大学,环境与水利学院,河南,郑州,450001, 郑州大学,环境与水利学院,河南,郑州,450001, 郑州大学,环境与水利学院,河南,郑州,450001
- Author(s):
-
Ma Xiaoxia; CHEN Xin; Hu Tiecheng
-
-
- 关键词:
-
径流预报; ANFIS; 人工神经网络; 影响因子
- Keywords:
-
runoff forecasting; ANFIS; artificial neural networks; Impact factor
- DOI:
-
10.3969/j.issn.1671-6833.2007.03.032
- 文献标志码:
-
A
- 摘要:
-
分析以往年径流预报方法的特点,阐述自适应神经模糊推理系统(adaptive network-based fuzzy inference system,ANFIS),提出年径流预报的ANFIS模型,并将其应用到西北地区某水文站年径流预报中.以MATLAB为工具,依据该地区历年水文资料,对年径流量进行预报.实例结果表明,与改进的ANN模型(最速下降-共轭梯度法、进化单纯形法)相比,本方法计算速度快、泛化能力强、预报精度高,说明ANFIS在年径流预报方面具有良好的适用性.
- Abstract:
-
This paper analyzes the characteristics of the runoff forecasting method in previous years, expounds the adaptive network-based fuzzy inference system (ANFIS), proposes the ANFIS model of annual runoff forecasting, and applies it to the annual runoff forecast of a hydrological station in Northwest China. MATLAB is used as a tool to forecast annual runoff based on the hydrological data of the area. The example results show that compared with the improved ANN model (fastest descent-conjugate gradient method and evolutionary simplex method), the proposed method has fast calculation speed, strong generalization ability and high prediction accuracy, indicating that ANFIS has good applicability in annual runoff forecasting.
更新日期/Last Update:
1900-01-01