[1]李宗坤,陈乐意,孙颖章..偏最小二乘回归在渗流监控模型中的应用[J].郑州大学学报(工学版),2006,27(02):117-119,123.[doi:10.3969/j.issn.1671-6833.2006.02.030]
 Li Zongkun,Chen Willing,Sun Yingzhang.Application of partial least squares regression in seepage monitoring model[J].Journal of Zhengzhou University (Engineering Science),2006,27(02):117-119,123.[doi:10.3969/j.issn.1671-6833.2006.02.030]
点击复制

偏最小二乘回归在渗流监控模型中的应用()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
27
期数:
2006年02期
页码:
117-119,123
栏目:
出版日期:
1900-01-01

文章信息/Info

Title:


Application of partial least squares regression in seepage monitoring model
作者:
李宗坤陈乐意孙颖章.
郑州大学环境与利水学院,河南,郑州,450002, 水利部小浪底水利枢纽建设管理局,河南,郑州,450000
Author(s):
Li Zongkun; Chen Willing; Sun Yingzhang
关键词:
偏最小二乘回归 渗流监控模型 原型观测
Keywords:
DOI:
10.3969/j.issn.1671-6833.2006.02.030
文献标志码:
A
摘要:
在渗流监控指标中,库水位之间、库水位与降雨之间存在严重的相关性.利用普通多元线性回归建立渗流监控模型中,监控指标之间存在的多重相关性影响参数估计,扩大模型误差,破坏模型的稳健性.为了克服多重相关性对模型的干扰,引入了能辨别系统信息与噪声的偏最小二乘回归,并编制了程序.算例分析表明,偏最小二乘回归模型所分离出的各个影响分量能对大坝实测变量的变化作出合理的物理成因解释,而且偏最小二乘回归模型的预测能力也远优于普通最小二乘回归模型,前者的预测误差平方和约只有后者的二十分之一.
Abstract:
In the seepage monitoring index, there are serious correlations between reservoir water levels, reservoir water levels and rainfall. The general multiple linear regression is used to establish the seepage monitoring model, and the multiple correlations between the monitoring indicators affect the parameter estimation, expand the model error, and destroy the robustness of the model. In order to overcome the interference of multiple correlations on the model, a partial least squares regression that can distinguish system information from noise is introduced, and a program is compiled. Example analysis shows that the influencing components separated by the partial least squares regression model can make reasonable physical causes for the changes of the measured variables of the dam, and the prediction ability of the partial least squares regression model is far better than that of the ordinary least squares regression model, and the sum of the squared prediction errors of the former is only about one-twentieth of the latter.

更新日期/Last Update: 1900-01-01