[1]陆宜清,杨松华..多维组合预测的贝叶斯极大似然估计[J].郑州大学学报(工学版),2005,26(03):86-88.[doi:10.3969/j.issn.1671-6833.2005.03.023]
 LU Yiqing,Yang Songhua.Bayesian maximal likelihood estimation for multidimensional combinatorial predictions[J].Journal of Zhengzhou University (Engineering Science),2005,26(03):86-88.[doi:10.3969/j.issn.1671-6833.2005.03.023]
点击复制

多维组合预测的贝叶斯极大似然估计()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
26
期数:
2005年03期
页码:
86-88
栏目:
出版日期:
1900-01-01

文章信息/Info

Title:
Bayesian maximal likelihood estimation for multidimensional combinatorial predictions
作者:
陆宜清杨松华.
郑州牧业工程高等专科学校人文与基础科学系,河南,郑州,450011, 郑州大学数学系,河南,郑州,450052
Author(s):
LU Yiqing; Yang Songhua
关键词:
多维组合预测 贝叶斯极大似然估计 协方差阵
Keywords:
DOI:
10.3969/j.issn.1671-6833.2005.03.023
文献标志码:
A
摘要:
为了实际预测的需要,提出了多维组合预测问题,即若干单项多维预测的变权组合预测.在各单项预测无偏且服从正态分布前题下,求出了p时刻预测向量Xp的先验分布密度和后验分布密度.利用主观先验信息、预测信息和样本信息,运用贝叶斯估计方法,得到了Xp的贝叶斯极大似然估计,其权重随时刻p的改变而改变.本方法充分利用了多维变量间的相关信息,进一步提高了预测的科学性和有效性,体现了对样本信息和预测信息的进一步综合应用.
Abstract:
In order to meet the needs of actual forecasting, the multidimensional combination prediction problem is proposed, that is, the variable weight combination prediction of several single multidimensional predictions. Under the premise that each single prediction is unbiased and obeys the normal distribution, the prior distribution density and posterior distribution density of the p moment prediction vector Xp are found. Using subjective prior information, prediction information and sample information, and Bayesian estimation method, Bayesian maximum likelihood estimation of Xp is obtained, and its weight changes with the change of p. This method makes full use of the relevant information between multidimensional variables, further improves the scientificity and effectiveness of prediction, and reflects the further comprehensive application of sample information and prediction information.

更新日期/Last Update: 1900-01-01