[1]郭进军,张雷顺,李平先,等.火灾后新老砼粘结加固劈拉性能的神经网络模拟[J].郑州大学学报(工学版),2003,24(04):55-58.[doi:10.3969/j.issn.1671-6833.2003.04.013]
 Guo Jinjun,ZHANG Leishun,LI Pingxian,et al.Neural network simulation of new and old concrete bonding reinforcement splitting performance after fire[J].Journal of Zhengzhou University (Engineering Science),2003,24(04):55-58.[doi:10.3969/j.issn.1671-6833.2003.04.013]
点击复制

火灾后新老砼粘结加固劈拉性能的神经网络模拟()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
24
期数:
2003年04期
页码:
55-58
栏目:
出版日期:
1900-01-01

文章信息/Info

Title:
Neural network simulation of new and old concrete bonding reinforcement splitting performance after fire
作者:
郭进军张雷顺李平先等.
郑州大学环境与水利学院,河南,郑州,450002, 天津财经学院信息系,天津,300222
Author(s):
Guo Jinjun; ZHANG Leishun; LI Pingxian; etc
关键词:
新老混凝土粘结 人工神经网络 劈拉强度
Keywords:
DOI:
10.3969/j.issn.1671-6833.2003.04.013
文献标志码:
A
摘要:
遭受火灾的混凝土建筑物采用混凝土修补加固后的性能因受许多不定量因素的影响而变得非常复杂.在试验的基础上,采用人工神经网络对新老混凝土粘结面的劈拉强度进行了模拟和预报,程序计算结果与试验结果吻合很好,进而对不同因素组合下的粘结强度进行了预报.结果表明:采用人工神经网络方法对该课题的模拟预报是准确有效的,得到了多种因素对新老混凝土粘结劈拉强度的影响规律,以利于对试验结果的补充与分析.
Abstract:
The performance of concrete buildings suffering from fire after concrete repair and reinforcement is greatly complicated by many inquantitative factors. On the basis of the experiment, the artificial neural network is used to simulate and predict the splitting strength of the new and old concrete bonding surfaces, and the program calculation results are in good agreement with the test results, and then the bonding strength under different factors is predicted. The results show that the artificial neural network method is used to simulate and predict this topic accurately and effectively, and the influence of various factors on the bonding and splitting strength of new and old concrete is obtained, which is conducive to the supplement and analysis of the test results.

相似文献/References:

[1]李亦芳,程万里,刘建厅..基于人工神经网络与回归分析的水质预测[J].郑州大学学报(工学版),2008,29(01):106.
 LI Yifang,Cheng Wanli,Liu Jian Hall.Water quality prediction based on artificial neural network and regression analysis[J].Journal of Zhengzhou University (Engineering Science),2008,29(04):106.
[2]孟令启,王建勋,雷明杰,等.中厚板轧机应力状态系数神经网络模型[J].郑州大学学报(工学版),2009,30(02):103.
 MENG Lingqi,WANG Jianxun,LEI Mingjie,et al.Neural Network Model of Stress State Coefficient of Medium and Heavy Plate Rolling Mill[J].Journal of Zhengzhou University (Engineering Science),2009,30(04):103.
[3]马细霞,陈鑫,胡铁成..基于ANFIS模型的年径流预报方法[J].郑州大学学报(工学版),2007,28(03):121.[doi:10.3969/j.issn.1671-6833.2007.03.032]
 Ma Xiaoxia,CHEN Xin,Hu Tiecheng.Annual runoff forecasting method based on ANFIS model[J].Journal of Zhengzhou University (Engineering Science),2007,28(04):121.[doi:10.3969/j.issn.1671-6833.2007.03.032]

更新日期/Last Update: 1900-01-01