[1]孟令保.特征重根型变系数线性齐次微分方程的降阶求解方法[J].郑州大学学报(工学版),1995,16(03):8-11.
Meng Lingbao,Features of characteristic roots variable coefficient linear linear line -to -divide equations[J].Journal of Zhengzhou University (Engineering Science),1995,16(03):8-11.
点击复制
特征重根型变系数线性齐次微分方程的降阶求解方法()
《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]
- 卷:
-
16
- 期数:
-
1995年03期
- 页码:
-
8-11
- 栏目:
-
- 出版日期:
-
1995-03-28
文章信息/Info
- Title:
-
Features of characteristic roots variable coefficient linear linear line -to -divide equations
- 作者:
-
孟令保;
-
沈阳化工学院,
- Author(s):
-
Meng Lingbao;
-
Shenyang Institute of Chemical Technology,
-
- 关键词:
-
线性微分方程; 特征方程根; 特解; 通解
- Keywords:
-
Linear differential equation; feature equation roots; special solution
- 文献标志码:
-
A
- 摘要:
-
本文主要解决了具有特征重根型的变系数线性齐次微分方程的两个问题:①该类方程若有 Y 重特征根,则该类方程便可一次降价为 n Y 阶方程,推广了常系数线方程的降阶原理。②该类型方程可在事先不知道任何特征的前提下,就可以求其某些特解。
- Abstract:
-
This article mainly solves two problems with the variable coefficient linearly differential equations with characteristic heavy root types: ① If the type of equation has Y heavy characteristics roots, this type of equation can be reduced to N Y -level equations at one time, and the principle of reduction of the constant coefficient equation is promoted. ② This type of equation can find some special solutions on the premise of not knowing any features in advance.
更新日期/Last Update:
1900-01-01