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An Intelligent Analysis and Service Design Method for User Feedback

WANG Ye' ZHOU Siyuan' WENG Zhiyuan® CHEN Junwu'

( 1.School of Computer and Information Engineering Zhejiang Gongshang University Hangzhou 310018 China; 2.Department of Com—
puter Science and Engineering University of Nebraska-Lincoln Lincoln 68508 U.S.)

Abstract: In order to process user comments an intelligent analysis and service design method was proposed. The
user comments from multiple i0S Apps were mined intelligently. The potential user requirements were identified
from these comments. Firstly user requirements were summarized and classified into ten categories. Secondly user
comments were crawled cleaned and labeled to form a classification dataset. Then TextCNN BiLSTM _
Attention and BERT were used to processed these data. The classification results were prioritized. Finally the
method was packaged into a reusable intelligent service module for remote calls. Experimental results showed that
the TextCNN model had the best overall performance while the BERT model had the best performance in precision.
The BERT model optimized the training process through parallel computing and could be extended to large-scale
projects. Therefore when with large data volumes and the priority of accuracy over time the BERT model was
recommended. Conversely the TextCNN model would be recommended when dealing with user needs with small da—
ta and short time consumption.

Keywords: requirement analysis; service design; service computing; deep learning; user feedback



